Problem 3.19

Use Equation 3.73 (or Problem 3.18 (c) and (d)) to show that:
(a) For any (normalized) wave packet representing a free particle $(V(x)=0),\langle x\rangle$ moves at constant velocity (this is the quantum analog to Newton's first law). Note: You showed this for a gaussian wave packet in Problem 2.42, but it is completely general.
(b) For any (normalized) wave packet representing a particle in the harmonic oscillator potential $\left(V(x)=\frac{1}{2} m \omega^{2} x^{2}\right),\langle x\rangle$ oscillates at the classical frequency. Note: You showed this for a particular gaussian wave packet in Problem 2.49, but it is completely general.

Solution

Start with the result from part (c) of Problem 3.18.

$$
m \frac{d\langle x\rangle}{d t}=\langle p\rangle
$$

Differentiate both sides with respect to t.

$$
\frac{d}{d t}\left(m \frac{d\langle x\rangle}{d t}\right)=\frac{d}{d t}\langle p\rangle
$$

Use the result from part (d) of Problem 3.18.

$$
\begin{equation*}
m \frac{d^{2}\langle x\rangle}{d t^{2}}=\left\langle-\frac{d V}{d x}\right\rangle \tag{1}
\end{equation*}
$$

This is the quantum analog to Newton's second law.

Part (a)

Suppose there's a free particle represented by a wave packet that satisfies $\langle x\rangle=x_{0}$ at $t=0$ and $d\langle x\rangle / d t=v_{0}$ at $t=0$. Equation (1) becomes

$$
\begin{aligned}
m \frac{d^{2}\langle x\rangle}{d t^{2}} & =\left\langle-\frac{d}{d x}(0)\right\rangle \\
& =\langle 0\rangle \\
& =\langle\Psi| 0|\Psi\rangle \\
& =\int_{-\infty}^{\infty} \Psi^{*}(x, t)(0) \Psi(x, t) d x \\
& =0 .
\end{aligned}
$$

Divide both sides by m.

$$
\frac{d^{2}\langle x\rangle}{d t^{2}}=0
$$

Integrate both sides with respect to t.

$$
\frac{d\langle x\rangle}{d t}=C_{1}
$$

Integrate both sides with respect to t once more.

$$
\langle x\rangle=C_{1} t+C_{2}
$$

Apply the two initial conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& \text { At } t=0: \quad\langle x\rangle=C_{2}=x_{0} \\
& \text { At } t=0: \quad \frac{d\langle x\rangle}{d t}=C_{1}=v_{0}
\end{aligned}
$$

Therefore,

$$
\langle x\rangle=x_{0}+v_{0} t,
$$

which indicates the wave packet moves with constant velocity v_{0}.

Part (b)

Suppose there's a particle represented by a wave packet that satisfies $\langle x\rangle=x_{0}$ at $t=0$ and $d\langle x\rangle / d t=v_{0}$ at $t=0$ in the harmonic oscillator potential. Equation (1) becomes

$$
\begin{aligned}
m \frac{d^{2}\langle x\rangle}{d t^{2}} & =\left\langle-\frac{d}{d x}\left(\frac{1}{2} m \omega^{2} x^{2}\right)\right\rangle \\
& =\left\langle-m \omega^{2} x\right\rangle \\
& =\langle\Psi|-m \omega^{2} x|\Psi\rangle \\
& =\int_{-\infty}^{\infty} \Psi^{*}(x, t)\left(-m \omega^{2} x\right) \Psi(x, t) d x \\
& =-m \omega^{2} \int_{-\infty}^{\infty} \Psi^{*}(x, t)(x) \Psi(x, t) d x \\
& =-m \omega^{2}\langle\Psi| \hat{x}|\Psi\rangle \\
& =-m \omega^{2}\langle x\rangle .
\end{aligned}
$$

Divide both sides by m.

$$
\frac{d^{2}\langle x\rangle}{d t^{2}}=-\omega^{2}\langle x\rangle
$$

The general solution for $\langle x\rangle$ can be written in terms of sine and cosine.

$$
\langle x\rangle=C_{3} \cos \omega t+C_{4} \sin \omega t
$$

Use the new arbitrary constants, A and δ, in place of C_{3} and C_{4}.

$$
\begin{aligned}
\langle x\rangle & =A \cos \delta \cos \omega t+A \sin \delta \sin \omega t \\
& =A \cos (\omega t-\delta)
\end{aligned}
$$

Differentiate this solution with respect to t.

$$
\frac{d\langle x\rangle}{d t}=-A \omega \sin (\omega t-\delta)
$$

Apply the two initial conditions to determine A and δ.

$$
\begin{array}{rlrl}
\text { At } t=0: & & \langle x\rangle & =A \cos \delta=x_{0} \\
\text { At } t=0: & \frac{d\langle x\rangle}{d t} & =A \omega \sin \delta=v_{0}
\end{array}
$$

Square both sides of each equation and add them together to eliminate δ.

$$
\begin{gathered}
(A \cos \delta)^{2}+(A \sin \delta)^{2}=x_{0}^{2}+\left(\frac{v_{0}}{\omega}\right)^{2} \\
A^{2}=\frac{\omega^{2} x_{0}^{2}+v_{0}^{2}}{\omega^{2}} \\
A=\frac{\sqrt{\omega^{2} x_{0}^{2}+v_{0}^{2}}}{\omega}
\end{gathered}
$$

Divide the respective sides instead to eliminate A.

$$
\begin{gathered}
\frac{A \sin \delta}{A \cos \delta}=\frac{\frac{v_{0}}{\omega}}{x_{0}} \\
\tan \delta=\frac{v_{0}}{\omega x_{0}} \\
\delta=\tan ^{-1}\left(\frac{v_{0}}{\omega x_{0}}\right)+n \pi, \quad n=0, \pm 1, \pm 2, \ldots
\end{gathered}
$$

Therefore,

$$
\langle x\rangle=\frac{\sqrt{\omega^{2} x_{0}^{2}+v_{0}^{2}}}{\omega} \cos (\omega t-\delta),
$$

which indicates the wave packet oscillates with an angular frequency of ω.

